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Abstract  

To address two important performance-limiting issues of low-

cost mobile satellite hand-held terminals, oscillator phase 

noise and adjacent channel interference, we present a low-

complexity digital phase lock loop bandwidth adaptation and 

a novel amplitude phase imbalance compensator (scheduled 

after frequency locking a demodulator, but prior to achieving 

symbol timing recovery and unambiguous phase lock).   

 

Index Terms— Amplitude estimation, compensation, phase 

estimation, phase-locked loops, phase noise.  

1. Introduction 

Processing architectures of low cost satellite hand-held 

terminals, with small antenna aperture, are optimized to 

achieve interference suppression. For example, down-

converters (from L- or S-band) may provide Zero-IF 

quadrature (I/Q) signals for ADC digitization and DSP 

demodulation/ decoding. Alternatively, a Low-IF architecture 

alleviates image rejection associated with flicker noise and 

signal independent d.c. offsets in quadrature paths. Fig. 1’s S-

band to low IF converter IC’s output I/Q filters typically have 

wide (e.g., 17MHz) low-pass responses; thus, a tunable, 

higher quality factor input band-pass filter might limit input 

noise bandwidth (reducing required amplifier and ADC 

dynamic range in addition to total harmonic distortion and 

inter-modulation products at the I/Q converter’s low-IF 

output). 
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Figure 1: Low-cost low-IF Satellite Demodulator 

  

Amplitude and phase imbalance of the quadrature paths result 

in image interference aliasing into the desired signal band, 

thus degrading receiver performance [1]. In addition, since 

optimum decision boundaries (as well as soft-decision 

computation) depend on I/Q amplitude and phase imbalance, 

as shown in Fig. 2 for BPSK, compensation is desirable. 

 
Figure 2: BPSK (in AWGN, Eb/N0=9dB) decision boundaries 

 

Though many techniques exist for I/Q phase and amplitude 

imbalance compensation in digital demodulators [2], they rely 

on extra hardware or firmware, to implement FFT or other 

such amplitude or phase estimation algorithm or adaptive 

noise canceller [3]. While other schemes to compensate 

imbalance, such as weighted amplitude and phase mean 

squared error minimization over the pass band [4], most 

modulation schemes have maximum power spectral density 

(PSD) at the carrier frequency. The calibration scheme 

presented separately minimizes amplitude and phase errors at 

the operating frequency, i.e. carrier frequency plus estimated 

offset (in a narrow band application, the offset, as a 

percentage of baud rate, can be significant). Further, our 

scheme exploits the frequency lock loop inherent to any 

digital demodulator, thereby minimizing additional logic 

required (by reusing existing firmware).   

 

In addition, longer baud-rate duration signaling is more 

susceptible to phase noise (PN), which increases with carrier 

frequency (an ideal frequency multiplication by J increases 

the reference source’s PN mask by 20logJ, while an 

additional 2dB margin being allowed for practical realization 

[5]). For coded modulations, PN robust carrier 

synchronization techniques (with the complication that 

number of trellis states depending on oscillator PN) have been 

developed, e.g., a phase tracking Viterbi algorithm [6] and the 

Colavolpe-Barbieri-Caire (CBC) algorithm [7], which reduce 



hand-held terminal cost by relaxing LO PN specifications. 

The PN distribution (assumed unimodal and symmetric in [6]) 

becomes biased (pg. 134 of [8]) in the presence of amplitude 

and/or phase imbalance (as in Fig. 2), substantially increasing 

error probability (unless phase states, for both algorithms, are 

discretized in a manner that accounts for the bias). Instead of 

these compute-intensive trellis augmentation schemes (which 

address the strong PN case), we describe a low-complexity 

adaptation of a decision-directed phase-lock loop (DDPLL) 

for a moderate PN oscillator. This case is of practical 

significance as recent manufacturing process advances have 

enabled inexpensive AT-cut crystal oscillators with tighter PN 

specifications. This method also extends to Costas loops 

(typically used where decisions cannot be made, e.g., 

interference cancellation for carrier-in-carrier 

communications [9]).  

 

The overall scheme, described in the following sections, 

consists of four steps: a) DDPLL gain adaptation based on 

measured oscillator flicker and estimated thermal noise, b) 

amplitude imbalance estimation via variance measurements of 

quadrature paths after PLL stabilization, c) phase imbalance 

estimation based on already estimated amplitude imbalance 

and d) low pass filtered complex mixer outputs and 

compensation of both amplitude and phase imbalances.  

 

Oscillator flicker and I/Q imbalance significantly degrade 

demodulator performance in the presence of in-band 

interferers (in particular, a negative frequency carrier at 

baseband), and the architecture and algorithms here are 

specifically designed for this scenario. 

2. Digital PLL Gain Adaptation 

PN defines the frequency domain uncertainty of an oscillator. 

Suppose an oscillator’s output is V(t)=V0cos[ωct+φc(t)], where 

φc(t) is random PN (in radians), i.e., V(t)=V0[cos(ωct)⋅cosφc(t)- 

sin(ωct)⋅sinφc(t)]. Since φc(t)<<1, cos(φc(t))≈1 and 

sin(φc(t))≈φc(t), and V(t)=V0[cos(ωct)- sin(ωct)⋅φc(t)]. In a PN 

measurement system, the oscillator’s output, when multiplied 

with sin(ωct) and low-pass filtered (to reject the double 

frequency term), yields V(t)=0.5⋅V0[1-φc(t)], and the SSB PSD 

of φc(t) relative to unity (the first term) is the PN spectral 

power of the oscillator in dBc/Hz. 

 

A coherent demodulator’s phase detector output, based on 

matched filtered in-phase (I) and quadrature (Q) components, 

i.e., tan
-1
(Q/I), is periodically sampled, either every symbol, 

or once every L symbols (a block phase estimator [10]). The 

variance of the phase-detector’s discrete-time phase estimate 

is the sum of all the synthesizers’ PN and the PN induced by 

thermal noise. Discrete-time PN of the former may be 

modeled (using the method of [11]), from manufacturer–

supplied synthesizer’s PN plot, as shown by Fig. 3. 

 

For example, the simulated phase spectrum of Fig. 4 

represents the discrete-time PN spectrum (for a sampling rate, 

fs, which for the purposes of performance evaluation is taken 

equal to the baud rate, here 9600Hz) of {φc(k)} of the, say, S-

band carrier (at 2GHz) synthesized from a low-cost 10MHz 

AT-cut crystal oscillator (whose flicker psd is, similar to the 

typical PN density on pg. 88 of [8], approximately f 
-1.5

). 
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 Figure 3: Discrete PN generation 

 
Figure 4: Discrete-time PN spectrum 

 

When PN (not necessarily conforming, as in some literature, 

to a Wiener model) variance, σ∆w
2
, is significant when 

compared to noise variance, σn
2
, the loop bandwidth of the 

decision-directed phase-lock loop (DDPLL) may be tuned 

(via a parameter K) as depicted in Fig. 5. Suppose the 

oscillator’s PN low frequency PSD i.e., the power in the 0
th
 

bin of a discrete Fourier Transform (DFT) divided by the 

DFT’s bandwidth as shown in Fig. 4, is G
2
 and the oscillator’s 

known PN bandwidth is C (which can be taken as 3-dB 

bandwidth of oscillator’s PN; for Fig. 4’s oscillator C is about 

10Hz). Thus, the oscillator induced phase error variance, 

σ2
OSC, is (C⋅fs/N)⋅(G/K)

2
, for a 1

st 
order DDPLL, where the 

carrier phase estimate θn at the nth baud is updated from the 

carrier phase estimated at the previous baud according to 

θn=θn-1+K⋅∆θn (∆θn being the nth baud’s phase detector 

output) and (C⋅fs/N)⋅[G(1-K)/K]
2
, for a 2

nd
 order DDPLL, 

where θn=θn-1+K⋅(θn-1-θn-2)+K⋅∆θn. The overall (observed) PN 

variance, 2

θ̂
σ

∆
, is the sum of the oscillator induced PN 

variance, the phase error variance due to thermal noise i.e., 

πBLTs/[4L⋅(Eb/N0)] for a DDPLL and (N0BL/P
2
)⋅(P+N0BL) for 

a Costas loop (pg. 128 of [8]), where BL is the phase 

detector’s loop bandwidth, Ts is the symbol rate and P is the 

signal power, and the driving PN variance, σ∆w
2
. The 

estimated PN power for an L-baud block phase estimator, 

considering the loop-bandwidth of a 1
st
 order DDPLL is 

therefore: 
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where (0<K<1), and for a 2
nd
 order DDPLL: 
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where (0<K<0.33). Minimizing the two functions (1) and (2) 

with respect to K require K to be a root of a 8
th
 order 

polynomial of the form x
8
-2x

6
+4Ax

3
+2x

2
-1 for 1

st
 order DPLL 

and x
8
-2x

6
+36Ax

5
+72Ax

3
+2x

2
-1 for 2

nd 
order DPLL, where 

A=8⋅(fs/N)⋅G
2⋅L⋅(Eb/N0)⋅C. 

2

θ̂
σ

∆
 is a unimodal function of K in 

(0, 1) and (0, 0.33) for 1
st
 and 2

nd
 order cases and therefore a 

golden section search [12] in these intervals may be used to 

find K. In practice, a 2
nd
 order DDPLL (that tracks frequency 

offsets) is used, with K initially chosen for a wide BL to obtain 

rapid phase and frequency lock; thereafter K is reduced to a 

value (Kinitial) for low cycle-slip probability in the PN 

estimation interval, and the final K being determined as a 

single-parameter table look-up (as detailed below); this 

procedure allows automatic update of K on demodulator 

power-on, slow fading (e.g., rain), or oscillator aging. 
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 Figure 5: BPSK decision-directed block phase estimator, 2
nd
 

order phase tracker 
 

Since oscillator flicker noise dominates the measured phase’s 

low-frequency spectrum (from the output of the phase 

detector) G
2
 is estimated from the power of an N-point DFT 

of phase detector outputs (in radians), |D0|
2
, of bandwidth fs/N, 

centered at d.c. as G
2
=[(Kinitial)

2⋅N⋅|D0|
2
]/[C⋅fs⋅(1-Kinitial)

2
]. A 

second N-point, bandwidth-fs/N, DFT of phase detector 

outputs, |DM|
2
, (positioned at M⋅fs/N where oscillator PN is 

negligible compared to independent of K thermal noise 

induced PN) obtains Eb/N0=fs/(8L⋅N⋅|DM|
2
) for a 2

nd
 order 

DDPLL. K is then obtained (see Fig. 6) via table look-up 

based on G
2⋅(Eb/N0)=(Kinitial)

2
/[8C⋅L⋅(1-Kinitial)

2
]⋅(|D0|

2
/|DM|

2
) 

(see Fig. 7). For low baud rate (i.e., low C/N0), where PN is 

significant, a low-order phase modulation (i.e., BPSK) is 

preferred, where a thumb-rule (that increases carrier power by 

only a fraction of a dB of theoretical high-SNR AWGN 

performance) requires that the rms value of each baud’s phase 

increment to be less than π/10 radians.  

 
Figure 6: Decision-directed phase detector output’s PSD for 

4800bps BPSK with Fig. 4’s oscillator PN, K=0.1 and M=N/2 

 
Figure 7: K vs. |D0|

2
/|DM|

2
, (C=10Hz, L=16, Kinitial=0.1) 

 

In addition to carrier induced PN, a decision-directed 

(narrowband) loop PN for BPSK, induced by decision errors 

due to noise alone is [8] σφ
2
=(N0BL/P)/{1-2Q[2(Eb/N0)

½
]}

2
. 

The error probability, PEφ, due to a phase error φ, the sum of 

phase errors induced by carrier PN and thermal noise is 

PEφ=Q(2Eb/N0)⋅cosφ. This error probability, averaged over 
the PN distribution, yields average BER. Fig. 8 shows that the 

Eb/N0 for a given BER for BPSK, a constraint length 7, rate-½ 

coded, 4800 and 9600 baud rates with XO PN (of Fig. 4) 

degrades by only 0.4dB compared to when PN is absent. This 

also suggests a fixed DPLL gain, K, for a satellite link’s PN 

specification and modulation/ coding scheme. 

 

In burst-mode applications, K may be initialized based on 

nominal local oscillator PN and Eb/N0, but subsequently 

calculated based on estimated PN (via carrier PSD computed 

on data-windows containing un-modulated carrier in each 

burst’s preamble [13] on several bursts) and estimated Eb/N0. 



 
Figure 8: BER with DPLL gain adapted to K=0.33 (as 

compared to achieved performance with PN absent)  

3. Amplitude Imbalance Estimation 

Fig. 9 shows the flow of the amplitude and phase imbalanced 

quadrature signals through the input decimation filter, 

complex mixer and the low pass filter. Because I/Q 

calibration occurs after frequency lock, it has the advantage 

that it can be done through a transponder loop (thereby 

calibrating I/Q from the un-modulated received signal). 
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 Figure 9: Uncompensated amplitude/ phase I/Q demodulator 
 

Assuming that the analog signal processing chain’s noise 

(contributed by amplifiers, filters and ADCs) of each 

quadrature path (up to where digital processing takes over) is 

proportional to the amplitude gain in that channel and that 

differential ADC quantization noise is negligible compared to 

signal amplitudes, the amplitude imbalance is obtained from 

variance estimates, σI
2
 and σQ

2
 (computed as the difference of 

mean-of-squares and square-of-mean, at the end of N sample 

block, during which summation of input samples and their 

squares are computed in parallel), of digitized samples of I 

and Q quadrature paths, with unmodulated carrier input, once 

the frequency PLL locks (without frequency PLL lock, a 

50ppm clock can produce up to 2.5Hz offset at a 50kHz IF, or 

an unacceptable phase error of  2.5×1024×360/129600=7.1° 
in the N sample block) to the input. The number of samples, 

N, over which σI
2
 and σQ

2
 are measured is selected so that it is 

nearly a large M integer cycles, to minimize the estimation 

error. For the case of a 50kHz carrier and a sampling rate of 

518400Hz, N may be selected around 1024 (to span about 

100 carrier cycles) as: 

N=

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fNCO is NCO locked frequency and fs the sampling frequency. 

4. Phase Imbalance Estimation 

After the amplitude imbalance estimation (and amplitude 

imbalance compensation using the result of the previous 

section), we compute r over N samples as, r=(AI
2
+AQ

2
)
½
. 

Averaging both I' and Q' outputs of the complex mixer and 

LPF over N samples, the frequency, but not necessarily phase, 

locked, complex mixer’s output shown in Fig. 9 is 

{[AIcos(ωct)+AQcos(ωct+φ)]+j[AQsin(ωct+φ)+AIsin(ωct)]}e-j(ωct+θ)   

(4)
 

and can be written as r⋅e-jθ(cosψ+sinψ⋅ejφ
)         (5) 

where sinψ=AQ/(AI
2
+AQ

2
)
½
, cosψ=AI/(AI

2
+AQ

2
)
½ 

and  

ψ=tan-1(AQ/AI). Approximating, for small φ, cosφ≈1-φ2/2 and 
sinφ≈φ, (5) can be written as I'+j⋅Q', where 

 

I' ≈  r[cosθ (cosψ+sinψ-(φ2/2) sinψ)+φ sinθsinψ]    (6a) 

Q' ≈ r[-sinθ (cosψ+sinψ-(φ2/2) sinψ)+φ cosθsinψ]   (6b) 

 

Let cosψ=cos(ξ+π/4) ≈ 2-½(1-ξ), sinψ=sin(ξ+π/4) ≈ 2-½(1+ξ). 
Thus, for small ξ=tan-1(AQ/AI)-π/4, cosψ+sinψ=2½ and 
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Eliminating the unknown carrier phase θ, 
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Fig. 10 plots the amplitude-only (I'
2
+Q'

2
)/r

2 
discriminant 

function (I'
2
+Q'

2
)/r

2
 with respect to phase imbalance. Since 

this measure has poor discrimination near zero phase, if 

estimated phase imbalance is assumed zero if the discriminant 

value is greater than 1.99869313, the maximum phase error 

magnitude is 0.0259 radians (or 1.48°). High (double) 
precision computations and high carrier C/N0 are necessary to 

obtain φ with sufficient accuracy. The phase offset’s sign is 
determined by trying both and applying the phase correction 

whose residual phase imbalance is close to 0. 



 
Figure 10: (I'

2
+Q'

2
)/r

2
 discriminant (top) and phase estimate 

error (bottom) as functions of phase imbalance 

5. Amplitude and Phase Imbalance Compensation 

Amplitude imbalance is compensated by scaling each of the 

quadrature paths by the estimated input rms value of the other 

path, as shown in Fig. 11. Phase imbalance is compensated by 

subtracting φX from Q path: 

X = AIAQcos(ωct)                   (9) 

Y = {AI[AQsin(ωct±φ)]} m φX             (10) 
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 Figure 11: Amplitude and phase compensated I/Q 

demodulator 

 

Fig. 12 shows Eb/N0 vs. BER for 4800bps, constraint length 7, 

rate-½ coded, BPSK, without and with I/Q compensation. 

 
Figure 12: BER performance with -2dB amplitude and π/8 
radians phase imbalance, before and after compensation   

6. Conclusions 

Low-cost mobile satellite terminals are being enabled by 

many single-stage S-band or L-band to baseband conversion 

ICs (some incorporating I/Q imbalance compensation for their 

analog outputs). Nevertheless, oscillator flicker, signal 

conditioning and ADC differential gain require digital 

compensation. We have described low-complexity algorithms 

that minimize performance degradation when oscillator PN 

and adjacent channel interference are present and shown their 

effectiveness. 

7. References 

[1] F. E. Churchill, G.W. Ogar and B.J. Thompson, “The 

Correction of I and Q Errors in a Coherent Processor,” 

IEEE Trans. on AES, vol.17, pp. 131-137, Jan. 1981 

[2] N. Sivannarayana, K. Veerabhadra Rao, “I-Q Imbalance 

Correction in Time and Frequency Domain with 

Application to Pulse Doppler Radar,” Proc. Of SPCOM-

1997, Bangalore, New Delhi: Tata McGraw-Hill,  1997, 

pp. 29–34. ISBN 0-07-463173-X 

[3] Li Yu Snelgrove, “A novel adaptive mismatch 

cancellation system for quadrature IF radio receivers,” 

IEEE Trans. on Circuits and Systems II, vol. 46, pp. 789-

801, Jun. 1999, ISSN 1057-7130 

[4] J. W. Pierre and D. R. Fuhrmann, “Consideration in the 

autocalibration of Quadrature Receivers,” Proc. ICASSP-

1995, pp.1900-1903.  

[5] “VHF Series - LO and Sprinter and Sprinter Plus,” 

product information, Wenzel Associates 

http://www.wenzel.com/plo.htm#lo 

[6] O. Macchi and L.L. Scharf, “A dynamic programming 

algorithm for phase estimation and data decoding on 

random phase channels,” IEEE Trans. Inform. Theory, 

pp. 581–595, September 1981. 

[7] G. Colavolpe, A. Barbieri, and G. Caire, "Algorithms for 

iterative decoding in the presence of strong phase noise," 

IEEE J. on Selected Areas Commun., vol. 23, pp. 1748-

1757, September 2005. 

[8] J.K. Holmes, “Coherent Spread Spectrum Systems,” 

Krieger Pub Co., ISBN: 0894644688, chapters 4 and 5. 

[9] S. Jayasimha and P. Jyothendar, “Canceling echoes 

distorted by satellite transponders,” Proc. Of National 

Conference on Communications (NCC 2006), pp. 112-

116, Omega Scientific Publishers, New Delhi, ISBN 81-

85399-80-8.  

[10] C.G. Hiremath and S. Jayasimha, “Design of burst mode 

decision-feedback QPSK demodulator,” Proceedings of 

SPCOM-1999, pp. 133-139. 

[11] N.J. Kasdin, “Discrete simulation of Colored Noise and 

Stochastic Processes and 1/f
α
 Power Law Noise 

Generation,” Proc. of IEEE, vol. 83, No. 5, May 1995, 

pp. 802-827.  

[12] William H. Press, Brian P. Flannery, Saul A. Teukolsky, 

William T. Vetterling, “Numerical Recipes,” Cambridge 

University Press, ISBN: 0521308119, pp. 274-282. 

[13] S. Jayasimha, P. Jyothendar and S. Pavanalatha, “SDR 

Framework for burst/ continuous MPSK/ 16-QAM 

modems,” Proc. of SPCOM '-04, ISBN 0-7803-8675-2, 

IEEE catalog no. 04EX926C. 


