Digitally Controlled Crystal Oven

S. Jayasimha and T. Praveen Kumar *Signion*

Attributes of widely-used frequency references

	Description	Stability/ accuracy	Price	Power	Warm-up time to rated operation	Applications
XO, VCXO	Crystal oscillator	10 ⁻⁴ -10 ⁻⁵	<\$1	50mW	<10s	Watches, phones, TV, PC, toys
ТСХО	Temperature compensated crystal oscillator	10 ⁻⁵ -10 ⁻⁶	<\$10	50mW	<10s	Wireless, GPS
OCXO (AT-cut)	Ovenized Crystal oscillator	10 ⁻⁷ -10 ⁻⁹	<\$200	600mW (peak)	<100s	Instruments, telecom, radar, satcom
Rubidium	Rb Frequency Standard	10 ⁻¹⁰ -10 ⁻¹²	<\$5000	20W	<300s	SONET/ SDH, calibration, test, GPS base stations
Cesium	Cs Frequency standard	10 ⁻¹¹ -10 ⁻¹²	<\$50,000	30W	<2000s	SONET/ SDH, calibration, test

Ovenized crystal oscillators (OCXOs)

- Stability of low-end (10⁻⁸ to 10⁻⁹) frequency standards
- Reduced steady-state power consumption
- Reduced warm-up time
- Priced at \$50, much of the cost is in manufacturing process and tuning/ calibration (rather than raw material)
- Our focus is on reducing tuning/ calibration costs by replacing analog components with digital technology

Temperature vs. Frequency

Use mass-produced oven materials

- Standard power resistors (rather than thermofoil heaters)
- Thermal mass of (electrically isolated) metalization of FR4
 PCB heat spreader may be FR4 PCB
 increased by nickel cladding
- Copper lead/ solder provides thermal connection from heater to metalization

Relative oven/ blanket dimensions

- Oven $C \propto r_1^3$
- Oven *R* (wrt ambient) $\propto (r_2 r_1)/r_1^2$
- Oven $RC \propto r_1 \cdot (r_2 r_1)$
- Maximized at $r_1 = r_2/2$ (independent of oven/ blanket materials!)
- At this r_1 (for a given r_2), high frequency variations of ambient temperature are filtered out
- Similarly, heater $RC \propto r_1$
- (Oven lag/ heater lag) $\propto (r_2 r_1)$. Increase for better control.
- Steady-state heater power $\propto (\theta_h \theta_a) \cdot r_1^2$ / $(r_2 - r_1)$

Traditional Oven Controller

- Use thermistor (resistor with –ive tempco) bead, bonded to heat sink, in otherwise resistive bridge
- Aging effects behavior of all components, but most severe is the drifts of the OP Amps (usually 3) in controller
- Need to tune controller before encapsulation (i.e., assumes that this is a repeatable process)
- Tuning potentiometers are effected by aging/ shock

Semiconductor Temperature Sensor

- Typical nonlinearity: ±0.1°C over -40°C-105°C
- ±0.5°C maximum error at a given temperature
- Drift with aging $<0.2^{\circ}\text{C over}$ 10,000 hours operation $V_{BE} - V_N = \frac{kT}{q} \ln(N)$

Proportional plus derivative controller with feed-forward

- Feed-forward to compensate for oscillation at thermal lag
- Lack of integral term (which would add to thermal lag and be prone to "wind-up") gives rise to a steady state "droop"
- Derivative term expands proportional range and reduces overshoot (which may harm electronic circuits over time)
- Can control to 0.0625°C

Compensation for supply voltage variations

- Regulation adds uncontrolled hot-spot in enclosure
- $\rho(n) = \rho(n-1) + \rho(n-1) \cdot [V^2(n-1) V^2(n)]/V^2(n)$
- Executed frequently (compared to the oven time constant)
- Anti-aliasing filter to reject high-frequency noise
- Use an inexpensive PWM chip to sense supply voltage

Implementation

- 8-PIN SOIC low-profile PIC12CE519-04I/SN micro-controller
- 16-byte EEPROM stores temperature/ frequency set-points and controller constants
- No interrupts!
- 8-bit timer has insufficient resolution to implement PWM (requires 16-bit accuracy)
- Use quantization to 8-bits and first order quantizer feed-back
- Communicate temperature to PC (every 1.2 seconds) and allow changes to set-points (temperature/ frequency/ controller constants)
- Use digital potentiometer to set varactor diode bias (for frequency tuning)

Oven response tuning

- Variant of the Ziegler-Nichols method
- Set $K_d=0$, $\alpha=1$ and then increase K to K_u , where continuous cycling, with period P_u seconds, around a lower-than nominal temperature occurs (Fig. a)
- K, K_d and α are set to $0.75K_u, 4P_u/\Delta T$ and $1-(\Delta T/P_u)$ respectively (ΔT is sampling time in seconds).
- For example oven, $K_u = 31$, $P_u = 36$ seconds; setting K=24, $K_d = 128$ and $\alpha = 31/32$ yields a rise time and settling time of 41 and 93 seconds respectively. Droop is 0.28°C. The overshoot from the drooped temperature is 0.41°C.
- Then set temperature to desired target (response in Fig. b)

(a) Continually cycling response at $70^{\circ}C$ set-point with K=31 (b) Oven response: during the settling period, from 0-300 secs, the supply voltage is 5.25V; from 300-420 seconds, the supply voltage is 4.75V; while in the remaining time the supply is once again 5.25V

Temperature set-point and frequency tuning

• Modified Allan variance (for phase noise) is:

$$mod \sigma_{y}^{2}(\tau) = \frac{2}{n^{4} \pi^{2} \tau_{0}^{2}} \int_{0}^{f_{h}} \frac{S_{y}(f) \sin^{6}(\pi \tau f)}{f^{2} \sin^{2}(\pi \tau_{0} f)} df$$

- Rather than specifying Allan variance, it is typical to specify the maximum value of the noise spectrum, S_y , at specified offsets from the center frequency
- Adjust the temperature set-point to obtain lowest phase noise curve
- Adjust the center frequency through the varactor diode bias
- Repeat the previous two steps until desired phase noise and center frequency are obtained

We have described:

- Oven construction
- Oven electronics
- Digital control algorithm
- Oven parameter tuning
- Temperature set-point and frequency tuning

Realizing a high performance and compact OCXO is a function of several other factors (in crystal manufacturing process) that have not been described!